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a b s t r a c t

This paper develops a singularity-free adaptive tracking control scheme for a general class of multi-
input and multi-output uncertain discrete-time nonlinear systems with non-canonical control gain
matrices. The estimation of the control gain matrices, especially in some non-canonical forms, may
be singular during parameter adaptation, which leads to the singularity problems of the adaptive
control laws. This paper employs the matrix decomposition technique to solve the problem under a
linearly parameterized adaptive control framework. The state and output feedback cases are addressed,
respectively, to ensure closed-loop stability and asymptotic output tracking. Compared with the
existing results, the features of the proposed adaptive control scheme include: (i) the proposed
control laws do not involve the high-gain issue commonly encountered in robust control methods;
(ii) two different filtered tracking error signals are introduced for the state and output feedback cases,
respectively. These filters are crucial to avoid causality contradiction of the adaptive control laws
commonly encountered in adaptive control of discrete-time systems; and (iii) a future time signal
estimation-based adaptive control law is developed to ensure asymptotic output tracking for the output
feedback case without requiring the high-gain observer. Finally, an illustrative example is given to
verify the validity of the proposed control scheme.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Regarding their significance in science and engineering, adap-
ive control systems have been extensively studied in the control
ommunity. Dealing with unknown control gains is an important
echnical issue and still attracts the interest of many researchers.
n this regard, many works have been published to handle the sin-
ularity problems caused by the unknown control gains (Chang,
000; De Mathelin & Bodson, 1995; Feng, Yu, & Han, 2013; Hou,
hi, Fang, & Duan, 2023; Hu, Fei, Ma, Wu, & Geng, 2016; Li, Liu,
i, & Xu, 2021; Li, Qiang, Zhuang, & Kaynak, 2004; Morse, 1993;
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Su, Xue, Liang, & Chen, 2022; Wang, Guo, Wen, Hu, & Qiao, 2019;
Wang, Marconi, & Kellett, 2022; Weller & Goodwin, 1994; Wu, Yu,
& Man, 1998; Yang, Zhang, & Fridman, 2022; Zhang, Xia, Shen, &
Cui, 2021; Zheng, Pan, Guo, & Yu, 2019).

The control gains for single-input and single-output (SISO) un-
certain systems are just scalars. Simply embedding some robust
techniques (e.g., parameter projection, σ -modification) in the
adaptive updating laws can ensure the estimates of the control
gains are non-zero, and lead to well-defined adaptive control
laws. In comparison, the control gains are matrices for multi-
input and multi-output (MIMO) uncertain systems. Using param-
eter projection or σ -modification-based adaptive updating laws
still relies on solid knowledge of the control gain matrices and
lacks robustness to parameter variations (Tao, 2014). In other
words, the design conditions are quite restrictive and largely
limit the application range. In this respect, an arising question
is whether a method can effectively handle the control gain
matrix singularity problem under some relaxed design conditions.
To this end, Morse (1993) introduced the matrix decomposition
technique into the adaptive control systems, and successfully
solved the control gain singularity problem for a class of uncer-
tain linear time-invariant (LTI) systems. Since then, the matrix
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ecomposition technique has been widely used in various control
roblems (Costa, Hsu, Imai, & Kokotovic, 2003; Hsu, Costa, &
izarralde, 2007; Imai, Costa, Hsu, Tao, & Kokotovic, 2004; Li, Xie,
Chen, 2008; Mirkin & Gutman, 2005). The readers are referred

o the monograph (Tao, 2003) that systematically synthesizes the
atrix decomposition-based model reference adaptive control
ethods for MIMO LTI systems covering continuous-time and
iscrete-time cases.
Meanwhile, the application of the matrix decomposition tech-

ique in LTI systems motivates the researchers to consider how
o employ matrix decomposition in nonlinear adaptive control
ystems. Based on this motivation, many works have been done
ainly using robust control and approximation techniques. For

nstance, Chen, Behal, and Dawson (2008) designed a matrix
ecomposition-based singularity-free robust controller to achieve
niformly ultimately bounded tracking by using state feedback
nd high-gain observer-based output feedback, respectively. Wu,
hen, Wu, and Zhang (2018) dealt with the singularity problem
or adaptive control of continuous-time nonlinear systems with
ime-varying parameterized uncertainties, and realized asymp-
otic output tracking by state feedback and uniformly ultimately
ounded output tracking by high-gain observer-based output
eedback, respectively. Wang, Isidori, and Su (2015) provided
n extended observer-based method for asymptotic stabilization
f nonlinear MIMO systems, given that the high-frequency gain
atrix is bounded. The fuzzy/neural network approximation-
ased adaptive control methods were also proposed to overcome
he singularity problems with the matrix decomposition tech-
ique (Arefi & Jahed-Motlagh, 2013; Boulkroune, Merazka, & Li,
018; Li, Yang, Hu, & Yang, 2007; Zhang, Tao, Chen, Wen, & Zhang,
019). Besides, the matrix decomposition technique has also been
idely used in some application studies. For example, Ma, Jiang,
ao, and Cheng (2015) developed a fault-tolerant adaptive con-
rol scheme for attitude tracking of flexible spacecraft based on
he gain matrix decomposition. Patterson, Sabelhaus, and Majidi
2022) addressed the state tracking problem for a soft robot ma-
ipulator by using a singular value decomposition compensator-
ased approach. It is noteworthy that the well-known back-
tepping technique developed in Krstic, Kanellakopoulos, and
okotovic (1995) is the main tool for control design and stability
nalysis in nonlinear adaptive control systems.
Compared with the continuous-time case, dealing with the

ontrol gain singularity problems for the discrete-time case in-
olves an additional technical issue: the designed control laws
ust have reasonable causality properties. In other words, the
xisting matrix decomposition-based methods for continuous-
ime systems are not suitable for the discrete-time counterparts.
ased on this fact, some researchers turn to study the control gain
atrix singularity problems of MIMO discrete-time nonlinear
daptive control systems. For instance, Qi, Tao, and Jiang (2014)
roposed an indicator function-based adaptive control scheme
or a class of MIMO time-varying systems by employing the
arameter projection technique to solve the singularity problem
nder the condition that some knowledge of the control gain
atrices is known. Fu, Chen, Wang, and Wu (2020) developed
supervised neural dynamic programming approach for a class
f MIMO nonlinear systems given that the control gain matrix
s bounded. In another study, Alanis, Sanchez, Loukianov, and
erez-Cisneros (2009) proposed an extended Kalman filter-based
raining algorithm to overcome the controller singularity prob-
em. It is of note that some control systems considered in the
iterature are restricted to the control gains in some triangular
tructures that do not involve the singularity problem (Ge, Zhang,
Lee, 2004; Yang, Li, Ge, & Lee, 2010; Zhang, Ge, & Lee, 2005).
eviewing the literature, we found that rare studies have applied

he matrix decomposition technique to solve the control gain

2

singularity problems in MIMO discrete-time nonlinear systems,
especially for the control gain matrices in non-canonical forms.

Therefore, despite many works devoted to addressing the
control gain singularity problems in linear and nonlinear systems,
some open issues are still yet to be solved, especially for the
discrete-time nonlinear case. Recently, a matrix decomposition-
based state feedback adaptive control scheme was proposed
in Zhang, Zhang, and Liu (2022) for a class of MIMO discrete-time
nonlinear systems, where the control gain is in non-canonical
form, and the system vector relative degree is [1, 1, . . . , 1]. The
proposed method in Zhang et al. (2022) can be applied to a
special class of nonlinear systems with specific vector relative
degree [1, 1, . . . , 1]. However, the following questions are still
open. (i) How to design a singularity-free adaptive control scheme
by using the matrix decomposition technique for MIMO discrete-
time nonlinear systems with general vector relative degrees?
(ii) Can the scheme still work for the general relative degrees
case and achieve the desired system performance (i.e., closed-
loop stability and asymptotic output tracking)? (iii) For the case
when the state is unavailable, how to develop an output feedback
adaptive control scheme without using the high-gain observer
to ensure asymptotic output tracking? In this paper, we will
systematically address the above questions. Specifically, a state
feedback adaptive control law is proposed for a general class
of MIMO discrete-time nonlinear systems with general vector
relative degrees. Then, for the case when the system state is
unavailable, a further time signal estimation-based adaptive out-
put feedback control law is developed to ensure closed-loop
stability and asymptotic output tracking. The proposed adaptive
control laws do not involve high-gain or causality contradiction
problems. Overall, the novelties and contributions of this paper
are as follows.

(i) For a general class of MIMO discrete-time nonlinear systems
with vector relative degree [ρ1, ρ2, . . . , ρM ], a singularity-
free state feedback adaptive control law is developed by
using the matrix decomposition technique. This control law
ensures closed-loop stability and asymptotic output track-
ing.

(ii) When the system state is unavailable, a singularity-free
output feedback adaptive control law is developed under
a future time signal estimation-based control framework.
This control law ensures closed-loop stability and asymp-
totic output tracking and, particularly, does not involve the
high-gain issue.

(iii) To design adaptive control laws with reasonable causal-
ity properties, two new filtered tracking error signals are
introduced to construct the modified estimation error sig-
nals. Such modifications successfully prevent the causal-
ity contradiction issue in the adaptive control laws often
encountered in discrete-time adaptive control systems.

The remainder of this paper is organized as follows. Section 2
formulates the system model and the control problems to be
solved in this paper. Section 3 and Section 4, as the main parts
of this paper, give the details of the matrix decomposition-based
state feedback and output feedback adaptive control designs,
respectively. Section 5 provides a simulation example. Finally,
Section 6 gives the concluding remarks.

2. Problem statement

This section formulates the system model, the control objec-
tive, the design conditions, and the technical issues to be solved
in this paper.
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.1. System model

Consider a class of uncertain MIMO discrete-time nonlinear
ystems of the form

ξi,j(t + 1) = ξi,j+1(t), j = 1, 2, . . . , ρi − 1,

i,ρi (t + 1) = θ∗T
fi φfi (x(t)) +

M∑
j=1

θ∗T
gij φgij (x(t))uj(t) + di(t),

yi(t) = ξi,1(t), i = 1, 2, . . . ,M, (1)

where x(t) = [ξ T
1 (t), ξ

T
2 (t), . . . , ξ

T
M (t)]T ∈ R

∑M
i=1 ρi with ξi(t) =

[ξi,1(t), ξi,2(t), . . . , ξi,ρi (t)]
T

∈ Rρi is the state vector, u(t) =

u1(t), u2(t), . . . , uM (t)]T ∈ RM is the input vector, and y(t) =

y1(t), y2(t), . . . , yM (t)]T ∈ RM is the output vector. In addition,
∗

fi
= [θ∗

fi1
, . . . , θ∗

fipi
]
T

∈ Rpi , θ∗
gij = [θ∗

gij1
, . . . , θ∗

gijqij
]
T

∈ Rqij are
nknown constant parameters, and

φfi (x(t)) = [fi1 (x(t)), . . . , fipi (x(t))]
T

∈ Rpi ,

gij (x(t)) = [gij1 (x(t)), . . . , gijqij (x(t))]
T

∈ Rqij , (2)

ith fik : R
∑M

i=1 ρi → R and gijk : R
∑M

i=1 ρi → R are known map-
ings. Moreover, the external disturbances di(t), i = 1, 2, . . . ,M ,
re bounded and modeled as

i(t) = θ∗T
di φdi (t), i = 1, 2, . . . ,M, (3)

where φdi (t) = [di1 (t), . . . , disi (t)]
T

∈ Rsi with dik : R → R is
nown mapping, and θ∗

di
= [θdi1

, . . . , θdisi
]
T

∈ Rsi is unknown
onstant parameter. Note that many practical systems can be
odeled as (1), such as rigid robots and motors (Dawson, Carroll,
Schneider, 1994), ships (Tee & Ge, 2006), and jet engines and

ircraft (Diao & Passino, 2001). Moreover, the disturbance model
3) can represent uncertain constant disturbances, sinusoidal dis-
urbances with unknown magnitudes, and the combinations of
hem. For more details of (3), the readers are referred to Song
nd Tao (2018).

.2. Control objective and design conditions

Control objective. For any given bounded reference output
ignal y∗(t) = [y∗

1(t), y
∗

2(t), . . . , y
∗

M (t)]T , the control objective of
his paper is to develop analytical singularity-free state feed-
ack and output feedback adaptive control laws, respectively,
nd ensure closed-loop stability and asymptotic output tracking
imt→∞(y(t) − y∗(t)) = 0 for the system (1).

Assumptions. To meet the control objective, we need the
following design conditions:

(A1): fik (x) : R
∑M

i=1 ρi → R, i = 1, . . . ,M, k = 1, . . . , pi are
ipschitz mappings on R

∑M
i=1 ρi .

(A2): The control gain matrix {θ∗T
gij φgij (x(t))}, i, j = 1, . . . ,M ,

can be expressed as Θ∗
g Φg (x(t)) and satisfies | det{Θ∗

g Φg (x(t))}| ≥

ϵ > 0, ∀x(t) ∈ R
∑M

i=1 ρi , where ϵ is an unknown constant, Θ∗
g

s an unknown constant square matrix, and Φg (x(t)) is a known
time-varying square matrix.

(A3): All leading principal minors of Θ∗
g , denoted as ∆i, i =

, . . . ,M , are nonzero and their signs are known.
Assumption (A2) can be regarded as a modified relative de-

ree condition indicating that the system (1) has vector relative
egree [ρ1, . . . , ρM ]. The relative degree information is actually

the input–output time delay and is crucial for adaptive control
design (Goodwin & Sin, 1984; Ioannou & Sun, 2012; Narendra
& Annaswamy, 1989; Tao, 2003). Assumption (A3) and the de-
composed form Θ∗

g Φg (x) in Assumption (A2) are used to handle
the singularity problem of the adaptive control law. In practice,
3

the sign of ∆i has certain physical meanings and can be verified
via the inherent system characteristics, although the control gain
matrices may be unknown. We illustrate a control gain matrix of
a linearized aircraft system model in Liu, Tao, and Joshi (2010) to
explain this issue. The Ref. Liu et al. (2010) shows that when the
inputs are engine throttle, elevator, and rudder, and the outputs
are forward velocity, pitch angle, and yaw angle, the control gain
matrix (denoted as Kp) is of the form Kp = [kp1, kp2, kp3] ∈

R3×3 with kp1 = [b011, b031, 0]T , kp2 = [b012, b032, 0]T , kp3 =

[0, 0, b064 cos(1/θ0)]T . As claimed in Liu et al. (2010), b0ij all have
certain physical meanings: b011 is the control gain from engine
throttle to forward acceleration; b012 is the control gain from the
elevator to forward acceleration; b031 is the control gain from
engine throttle to pitch acceleration; b032 is the control gain from
the elevator to pitch acceleration; and b064 is the control gain
from rudder to yaw acceleration. Based on the above physical
meanings of b0ij and practical experience, one can deduce their
signs as follows: b011 > 0, b012 > 0, b031 > 0, b032 < 0, and
b064 < 0. Here, θ0 is the value of the Euler pitch angle θ at the
wings-level steady-state equilibrium point that ensures cos θ0 >
0. Thus, based on the structure of Kp and the sign information,
one can directly calculate that ∆1 > 0, ∆2 < 0, and ∆3 > 0,
although the accurate values of b0ij and θ0 are unknown.

2.3. Technical issues

For simplicity of presentation, we rewrite the system model
(1) into the following compact form⎡⎢⎢⎣

y1(t + ρ1)
y2(t + ρ2)

...

yM (t + ρM )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ξ11(t + ρ1)
ξ21(t + ρ2)

...

ξM1(t + ρM )

⎤⎥⎥⎦
= Θ∗

f φf (x(t)) + Θ∗

g Φg (x(t))u(t) + Θ∗

dφd(t), (4)

where Θ∗

f = diag{θ∗T
f1

, ..., θ∗T
fM

} ∈ RM×
∑M

i=1 pi , φf (x(t)) = [φT
f1
(x(t)),

. . . , φT
fM
(x(t))]T , φd(t) = [φT

d1
(t), . . . , φT

dM
(t)]T and Θ∗

d = diag{θ∗T
d1

,

. . . , θ∗T
dM

} ∈ RM×
∑M

i=1 si .
Clarification of the singularity problem. If the parameters in

(4) were known, a simple nominal control law could be designed
as

u(t) = (Θ∗

g Φg (x(t)))−1(−Θ∗

f φf (x(t)) − Θ∗

dφd(t)

+[y∗

1(t + ρ1), . . . , y∗

M (t + ρM )]T ). (5)

Then, the closed-loop system is yi(t + ρi) = y∗

i (t + ρi), i =

1, 2, . . . ,M . This implies that the exact output tracking is
achieved. However, the nominal control law (5) is not available
since Θ∗

f , Θ∗
g , and Θ∗

d are unknown. A usual adaptive version of
the nominal control law is

u(t) = (Θg (t)Φg (x(t)))−1(−Θf (t)φf (x(t)) − Θd(t)φd(t)

+[y∗

1(t + ρ1), . . . , y∗

M (t + ρM )]T ), (6)

where Θf (t), Θg (t), and Θd(t) are estimates of Θ∗

f , Θ∗
g , and Θ∗

d ,
respectively, and updated by parameter updating law. It is note-
worthy that without parameter constraint in the process of adap-
tation, the matrix Θg (t) may be singular which results in the
singularity of the adaptive control law (6). The problem is how to
ensure Θg (t) is always non-singular in the process of parameter
adaptation. Apparently, the usual adaptive control law (6) cannot
fulfill this requirement.

A matrix decomposition-based solution. Recently, the litera-
ture (Zhang et al., 2022) proposed a matrix decomposition-based
state feedback adaptive control scheme for a class of nonlinear
systems with vector relative degree [1, 1, . . . , 1]. In this case,
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he output dynamics can be expressed as the form y(t + 1) =
∗

cf φf (x(t))+Θ∗

cbu(t) with Θ∗

cf and Θ∗

cb are unknown constant pa-
rameters. However, it is still open to study (i) how to design a ma-
trix decomposition-based state feedback adaptive control scheme
for system (1) with vector relative degree [ρ1, ρ2, . . . , ρM ]; and
ii) more importantly, when the system state is unavailable, how
o develop an output feedback adaptive control law to still ensure
losed-loop stability and asymptotic output tracking?
Note that using a high-gain observer-based method gener-

lly does not achieve asymptotic output tracking unless the
eference output signal and its derivatives up to some certain
rders all converge to zero. On the other hand, since x(t) =

ξ T
1 (t), ξ

T
2 (t), . . . , ξ

T
M (t)]T = [y1(t), y1(t + 1), . . . , y1(t + ρ1 −

), . . . , yM (t), yM (t + 1), . . . , yM (t + ρM − 1)]T consists of future
ime output signals, another key issue is that how to solve the
ausality contradiction problem when using output feedback.
verall, we will solve the following technical issues:

(i) how to develop a matrix decomposition-based singularity-
free state feedback adaptive control law to achieve closed-
loop stability and asymptotic output tracking for system (1)
with vector relative degree [ρ1, ρ2, . . . , ρM ];

(ii) how to develop a singularity-free output feedback adap-
tive control law without involving the high-gain issue to
achieve closed-loop stability and asymptotic output tracking
for system (1); and

(iii) how to avoid causality contradiction in the output feed-
back adaptive control law caused by the general high-order
relative degree (time delay) of system (1).

. State feedback adaptive control

In this section, we assume the system state x(t) is measurable,
hich implies that ξi(t) can be used for adaptive control design.
he design procedure contains five steps: (i) derivation of a pa-
ameterized model; (ii) construction of a state feedback adaptive
ontrol law; (iii) specification of a modified tracking error model;
iv) development of parameter updating law with a modified
stimation error signal; and (v) analysis of system performance.
Step 1: Derivation of a parameterized model. Based on As-

umption (A2), we decompose Θ∗
g as Θ∗

g = LD∗U uniquely. Here,
is a unit lower triangular matrix, U is a unit upper triangular
atrix, and D∗

= diag{d∗

1, d
∗

2, · · · , d∗

M} = diag{∆1,
∆2
∆1

, · · · ,
∆M

∆M−1
}. Using the matrices L,D∗,U , we express Θ∗

g as Θ∗
g =

∗DsUs, where S∗
= LD∗D−1

s LT is a positive definite matrix, Us =

−1
s L−1TDsU is a unit upper triangular matrix, and Ds is a diagonal
atrix of the form

s = diag{sign[d∗

1]γ1, sign[d∗

2]γ2, . . . , sign[d∗

M ]γM} (7)

with γi, i = 1, 2, . . . ,M , being arbitrary positive constants to be
hosen. Based on above operation, the system model (4) can be
xpressed as⎡⎢⎢⎣

y1(t + ρ1)
y2(t + ρ2)

...

yM (t + ρM )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ξ11(t + ρ1)
ξ21(t + ρ2)

...

ξM1(t + ρM )

⎤⎥⎥⎦
Θ∗

f φf (x(t)) + S∗DsUsū(t) + Θ∗

dφd(t), (8)

where ū(t) = Φg (x(t))u(t). Note that Φg (x(t)) is always nonsin-
gular with a bounded inverse for all x(t) ∈ R

∑M
i=1 ρi . Then, as

¯
long as u(t) is chosen, the control law u(t) can be calculated as

4

u(t) = Φ−1
g (x(t))ū(t). From (8), we have

S∗−1

⎡⎢⎢⎣
y1(t + ρ1)
y2(t + ρ2)

...

yM (t + ρM )

⎤⎥⎥⎦ = DsΘ
∗

1φf (x(t)) + DsΘ
∗

2 ū(t)

+Dsū(t) + DsΘ
∗

3φd(t), (9)

here
∗

1 = D−1
s S∗−1Θ∗

f , Θ∗

3 = D−1
s S∗−1Θ∗

d , (10)

nd Θ∗

2 = Us − I is of the form

∗

2 =

⎡⎢⎣ 0 θ∗

212 θ∗

213 · · · θ∗

21M
· · · · · · · · · · · · · · ·

0 0 0 · · · θ∗

2(M−1)M
0 0 0 · · · 0

⎤⎥⎦ . (11)

he signal Us is divided into the sum of two parts: I and Us − I .
ith this operation, we will show that the control law below is

lways well-defined.
Step 2: Construction of an adaptive control law. For any

iven bounded reference output signal y∗(t), the state feedback
daptive control law is designed as

(t) = Φ−1
g (x(t))ū(t),

¯(t) = (I + Θ2(t))−1 (
−Θ1(t)φf (x(t)) − Θ3(t)φd(t)

−Θ4(t)

⎡⎢⎣
∑ρ1−1

i=0 a1i(y1(t + i) − y∗

1(t + i))
...∑ρM−1

i=0 aMi(yM (t + i) − y∗

M (t + i))

⎤⎥⎦
+Θ4(t)

⎡⎢⎣ y∗

1(t + ρ1)
...

y∗

M (t + ρM )

⎤⎥⎦
⎞⎟⎠ , (12)

here Θi(t), i = 1, 2, 3, 4, are estimates of Θ∗

1 , Θ
∗

2 , Θ
∗

3 , (S
∗Ds)−1,

espectively. In particular, aji, i = 0, . . . , ρj − 1, are constant
arameters to be chosen such that all zeros of Pmj(z), j = 1, 2, . . .
M , are inside the unit circle of the complex z-plane with

mj(z) = zρj + aj,ρj−1zρj−1
+ · · · + aj1z + aj0. (13)

oreover, Θ2(t) is of the form

2(t) =

⎡⎢⎣ 0 θ212(t) θ213(t) · · · θ21M (t)
· · · · · · · · · · · · · · ·

0 0 0 · · · θ2(M−1)M(t)
0 0 0 · · · 0

⎤⎥⎦ , (14)

here θ2ij(t) is the estimate of θ∗

2ij. Here, det{I+Θ2(t)} is equal to
ne, which suggests that the adaptive control law (12) is always
onsingular and does not involve the high-gain issue. Also, u(t)
ontains yi(t + j), i = 1, 2, . . . ,M, j = 1, . . . , ρi − 1, which are
art of the system state and available at the current time instant.
Step 3: Specification of a modified tracking error model.

efine the tracking error as e(t) = y(t) − y∗(t) ∈ RM . Together
ith (9) and (12), we have

∗−1

⎡⎢⎢⎢⎣
y1(t + ρ1)
y2(t + ρ2)

...

yM (t + ρM )

⎤⎥⎥⎥⎦ = DsΘ4(t)

⎡⎢⎢⎢⎣
y∗

1(t + ρ1)
y∗

2(t + ρ2)
...

y∗

M (t + ρM )

⎤⎥⎥⎥⎦
DsΘ̃1(t)φf (x(t)) − DsΘ̃2(t)ū(t) − DsΘ̃3(t)φd(t)

DsΘ4(t)

⎡⎢⎣
∑ρ1−1

i=0 a1i(y1(t + i) − y∗

1(t + i))
...∑ρM−1 ∗

⎤⎥⎦ . (15)
i=0 aMi(yM (t + i) − yM (t + i))
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hen, with some manipulations on (15), we obtain

∗−1

⎡⎢⎣ e1(t + ρ1) +
∑ρ1−1

i=0 a1ie1(t + i)
...

eM (t + ρM ) +
∑ρM−1

i=0 aMieM (t + i)

⎤⎥⎦ =

−DsΘ̃1(t)φf (x(t)) − DsΘ̃2(t)ū(t) − DsΘ̃3(t)φd(t)

−DsΘ̃4(t)

⎡⎢⎣
∑ρ1−1

i=0 a1ie1(t + i) − y∗

1(t + ρ1)
...∑ρM−1

i=0 aMieM (t + i) − y∗

M (t + ρM )

⎤⎥⎦, (16)

here Θ̃i(t) = Θi(t) − Θ∗

i . Define

m(z) = diag{Pmj(z)}, Ψ ∗
=
[
Θ∗

1 , Θ∗

2 , Θ∗

3 , (S∗Ds)−1] ,
Ψ (t) = [Θ1(t), Θ2(t), Θ3(t), Θ4(t)] ,
Ψ̃ (t) = Ψ (t) − Ψ ∗

= [Θ̃1(t), Θ̃2(t), Θ̃3(t), Θ̃4(t)],
ϕ(t) = [−φT

f (x(t)), −ūT (t), −φT
d (t),

−

ρ1−1∑
i=0

a1ie1(t + i) + y∗

1(t + ρ1), · · · ,

−

ρM−1∑
i=0

aMieM (t + i) + y∗

M (t + ρM )]T . (17)

hen, (16) can be written as

m(z)[e](t) = S∗DsΨ̃ (t)ϕ(t). (18)

o implement ū(t), we express Ψ̃ (t)ϕ(t) as Ψ̃ (t)ϕ(t) = [(Ψ1(t)
−Ψ ∗

1 )ϕ1(t), . . . , (ΨM (t) − Ψ ∗

M )ϕM (t)
]T

,where

Ψ1(t) − Ψ ∗

1 =
[
θ212(t) − θ∗

212, · · · , θ21M (t) − θ∗

21M ,

Θ̃11(t), Θ̃31(t), Θ̃41(t)
]
,

...

M−1(t) − Ψ ∗

M−1 =
[
θ2(M−1)M (t) − θ∗

2(M−1)M ,

Θ̃1(M−1)(t), Θ̃3(M−1)(t), Θ̃4(M−1)(t)
]
,

ΨM (t) − Ψ ∗

M =
[
Θ̃1M (t), Θ̃3M (t), Θ̃4M (t)

]
, (19)

nd

ϕ1(t) =

[
− ū2(t), −ū3(t), . . . ,−ūM (t), −φT

f (x(t)),

−φT
d (t), −

ρ1−1∑
i=0

a1iei(t + i) + y∗

1(t + ρ1),

· · · , −

ρM−1∑
i=0

amieM (t + i) + y∗

M (t + ρM )

]
T

,

...

M−1(t) =

[
− ūM (t), −φT

f (x(t)), −φT
d (t),

−

ρ1−1∑
i=0

a1iei(t + i) + y∗

1(t + ρ1), . . . ,

−

ρM−1∑
i=0

amieM (t + i) + y∗

M (t + ρM )

]
T

,

ϕM (t) =

[
− φT

f (x(t)), −φT
d (t),
5

−

ρ1−1∑
i=0

a1iei(t + i) + y∗

1(t + ρ1), . . . ,

−

ρM−1∑
i=0

amieM (t + i) + y∗

M (t + ρM )

]
T

. (20)

o avoid the causality contradiction problem, we introduce a
table and strictly proper filter

(z) =
1

z − α
, (21)

where α is a constant chosen such that 0 ≤ α < 1. Then,
the impulse response function of h(z) is 1

α
(αt

− δ(t)) ≥ 0 with
δ(t) being the unit impulse response. A filtered tracking error is
defined as

ē(t) = Pm(z)h(z)[e](t) = [ē1(t), ē2(t), . . . , ēM (t)]T . (22)

From (13), (17), and (21), we see that Pm(z)h(z)[e](t)=diag{Pmi(z)
(z)[ei](t)}. To show ē(t) is available at the current time instant,
e divide Pmi(z) into a product of z − αi0 and Pmi0(z), where
mi0(z) = zρi−1

+
∑ρi−2

j=0 bijz j. Thus, ē(t) can be expressed as

¯(t) = diag
{
z − αi0

z − α
Pmi0(z)[ei](t)

}
(23)

ith Pmi0(z)[ei](t) = ei(t + ρi − 1) +
∑ρi−2

j=0 bijei(t + j). Note that
i(t + j) = yi(t + j) − y∗

i (t + j), i = 1, 2, . . . ,M , j = 1, . . . , ρi − 1.
ince yi(t + j), i = 1, 2, . . . ,M , j = 1, . . . , ρi − 1, are part of the
ystem state vector, the signals Pmi0(z)[ei](t), i = 1, . . . ,M , are
urely available at the current time instant. Therefore, as inferred
rom (23), ē is available at the current time instant. If we do not
ntroduce the filter h(z), then ē may be of the form ē = Pm(z)[e].
ith Pmi(z)[ei] = ei(t + ρi) +

∑ρi−1
j=0 aijei(t + j) and yi(t + ρi) is

future time signal, we see that Pm(z)[e] is unavailable at the
current time instant. Accordingly, using a combination of h(z) and
Pm(z) to define ē is necessary to avoid the causality contradiction
roblem in the state feedback case. The filtered error ē(t) is a

desired tracking error signal crucial for designing an estimation
error and a parameter updating law. Moreover, the condition that
the impulse response function of h(z) is greater than or equal to
ero is to guarantee the sign of the tracking error e(t) cannot be
hanged before and after filtering by h(z), and so is the output
eedback case.

Step 4: Development of a parameter updating law. Before
esigning the parameter updating law, we first define an estima-
ion error as

(t) = ē(t) + Φ(t)σ (t), (24)

here Φ(t) is an estimate of S∗Ds and σ (t) = [σ1(t), σ2(t), . . . ,
M (t)]T with

j(t) = Ψj(t)δj(t) − h(z)[Ψjϕj](t),

δj(t) = h(z)[ϕj](t). (25)

ote that ē(t), ε(t), σj(t), δj(t) are all available at the current time
nstant. To obtain the control signal u(t), we need to update
i(t), i = 1, 2, 3, 4, which is equivalent to update Ψ (t). Moreover,
(t) depends on Φ(t) that also needs to be updated. Thus, we
esign the parameter updating law as

T
j (t + 1) = Ψ T

j (t) −
sign{d∗

j }γjεj(t)δj(t)

m2(t)
, (26)

Φ(t + 1) = Φ(t) −
βε(t)σ T (t)

, (27)

m2(t)
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here j = 1, 2, . . . ,M ,

m(t) =

√1 +

M∑
j=1

σ 2
j (t) +

M∑
j=1

δTj (t)δj(t), (28)

and sign{d∗

j } and γj are specified in (7) such that 0 < γ 2
j <

2λmin{S∗−1
}. Also, β ∈ R is a constant parameter such that 0 <

β <
2λmin{S∗−1

}

λmax{S∗−1}
with λmin{S∗−1

} and λmax{S∗−1
} are the minimum

nd maximum eigenvalues of S∗−1, respectively.
Now, we give the following lemma to show the properties of

he estimated parameters.

emma 1. The parameter updating law (26)–(27) ensures
(i) Ψj(t) ∈ L∞, Φ(t) ∈ L∞, j = 1, 2, . . . ,M;
(ii) ε(t)

m(t) ∈ L2 ∩ L∞, Φ(t + 1) − Φ(t) ∈ L2 ∩ L∞, and Ψj(t + 1) −

j(t) ∈ L2 ∩ L∞, j = 1, 2, . . . ,M.

The proof of this lemma is similar to that of Lemma 2 in Zhang
t al. (2022), and omitted here. This lemma shows that the
arameter estimates have some important properties, which are
ssential for the stability analysis. Although Ψj(t + 1)− Ψj(t) and
(t+1)−Φ(t) converge to zero asymptotically, it does not mean

the convergence of Ψj(t) and Φ(t).
Step 5: Analysis of system performance. Firstly, we introduce

some useful notations: (i) c represents a signal bound; (ii) τ (t)
denotes a generic L2 ∩ L∞ function that goes to zero as t → ∞;
nd (iii) L∞e denotes the set L∞e

= {v(t)|∀s < ∞, vs(t) ∈ L∞
}, for

any function v(t) with vs(t) = v(t), t ≤ s, and vs(t) = 0, t > s.
Before giving the main result, we first specify two constructive

lemmas which are crucial for stability analysis.

Lemma 2. For any given discrete-time signals vi(t) ∈ Rpi , i =

1, 2, 3, with p1 = p2 such that v1(t) = q(z)[v2](t), where q(z)
is a proper and stable rational function whose impulse response
is larger than or equal to zero and v2(t) ∈ L∞e, v3(t) ∈ L∞e. If
∥v2(t)∥ ≤ τ1(t) supk≤t ∥v3(k)∥ + τ2(t), ∀t ≥ 0, then

∥v1(t)∥ ≤ τ3(t) sup
k≤t

∥v3(k)∥ + τ4(t), ∀t ≥ 0, (29)

where τi(t) > 0, i = 1, 2, 3, 4, are all L2 ∩ L∞ functions.

Proof. Ignoring the exponentially decaying effect of the initial
conditions, we obtain v1(t) =

∑t
k=0 qz(t − k)v2(k) from v1(t) =

q(z)[v2](t), where qz(t) ≥ 0 is the impulse response of q(z).
Next, we define µ3(t) =

∑t
k=0 qz(t − k)τ1(k) and µ4(t) =∑t

k=0 qz(t − k)τ2(k), which can also be expressed as the forms
µ3(t) = q(z)[τ1](t) and µ4(t) = q(z)[τ2](t). Note that q(z) is stable
and τ1(t), τ2(t) ∈ L2∩L∞. Then, we can get µ3(t), µ4(t) ∈ L2∩L∞.
Setting τ3(t) = µ3(t) and τ4(t) = µ4(t), we get (29). □

Lemma 3. (Tao, 2003) Let c(zI − A)−1b be a minimal realization of
the stable and proper rational function q(z). Then,

κT (t)q(z)[γ ](t) − q(z)[κTγ ](t)
= qc(z)[(qb(z)z)[γ T

](z − 1)[κ]](t), (30)

where qc(z) = c(zI − A)−1, qb(z) = (zI − A)−1b, and κ(t) and γ (t)
are any signals of appropriate dimensions.

It is straightforward to obtain Lemma 3 from the discrete-time
version of the well-known swapping lemma in Tao (2003). We
omit the proof for space.

Based on above derivations, we give the first main result of
this paper.
 e

6

Theorem 4. Under Assumptions (A1)-(A3), if the state feedback
adaptive control law (12) with the parameter updating law
(26)–(27) is applied to the system (1), then the closed-loop system is
stable and of asymptotic output tracking limt→∞(y(t) − y∗(t)) = 0.

Proof. The proof contains four steps. First, we show
M∑
j=1

|σj(t)| ≤ τ sup
k≤t

∥e(k)∥ + τ . (31)

Since ∥y∗(t)∥ ≤ c and fik is Lipschitz mapping, we derive that
∥ϕj(t)∥ ≤ c∥ξ (t)∥+c∥e(t)∥+c. Then, it follows from yi(t) = ξi,1(t)
that ∥ϕj(t)∥ ≤ c∥e(t)∥ + c . With σj(t) = Ψj(t)δj(t) − h(z)[Ψjϕj](t)
and δj(t) = h(z)[ϕj](t), it is inferred from Lemma 3 that

σj(t) = Ψj(t)h(z)[ϕj](t) − h(z)[Ψjϕj](t)

= hc(z)[(hb(z)z)[ϕT
j ](z − 1)[Ψ T

j ]](t), (32)

where c(zI − A)−1b denotes a minimal realization of h(z) and
hc(z) = c(zI − A)−1, hb(z) = (zI − A)−1b. Since hb(z)z is proper
and stable, we have ∥hb(z)z[ϕT

j ](t)∥ ≤ c + c supk≤t ∥e(k)∥. With
|[(hb(z)z)[ϕT

j ](z − 1)[Ψ T
j ]](t)| ≤ ∥Ψj(t+1)−Ψj(t)∥∥hb(z)z[ϕj](t)∥,

it is inferred from Lemma 1 that

|[(hb(z)z)[ϕT
j ](z − 1)[Ψ T

j ]](t)| ≤ τ sup
k≤t

∥e(k)∥ + τ . (33)

Since the impulse response function of h(z) is greater than or
equal to zero, this together with (32), (33), and Lemma 2, results
in |σj(t)| ≤ τ supk≤t ∥e(k)∥+τ , ∀j = 1, 2, . . . ,M . Thus, (31) holds.

Second, we prove that

m(t) ≤ c sup
k≤t

∥e(k)∥ + c. (34)

Starting from the definition of δj(t) and the fact that h(z) is strictly
proper and stable, we get ∥δj(t)∥ ≤ c supk≤t ∥ϕj(k)∥+c . Then, with
∥ϕj(t)∥ ≤ c∥e(t)∥ + c , we obtain

∥δj(t)∥ ≤ c sup
k≤t

∥e(k)∥ + c. (35)

From the definition of m(t) in (28), we conclude that m(t) ≤

1 +
∑M

j=1 |σj(t)| +
∑M

j=1 ∥δj(t)∥. Then, combining (31) and (35)
implies (34) holds.

Third, we show that e(t) ∈ L∞. From (24), we have

∥ē(t)∥ ≤ m(t)
 ε(t)
m(t)

+ ∥Φ(t)σ (t)∥. (36)

ince ε(t)
m(t) ∈ L2 ∩ L∞, Φ(t) ∈ L∞, using (31) gives ∥ē(t)∥ ≤

supk≤t ∥e(k)∥ + τ . Then, supk≤t ∥ē(k)∥ ≤ τ supk≤t ∥e(k)∥ + τ .

et P−1
m (z) be the inverse of Pm(z). Therefore, P−1

m (z)h−1(z) is also
roper and stable. From the definition of ē(t) in (22), we derive
hat ∥e(t)∥ ≤ c supk≤t ∥ē(t)∥ + c ≤ τ supk≤t ∥e(k)∥ + c, which
emonstrates that e(t) ∈ L∞.
Finally, we prove closed-loop stability and limt→∞(y(t) −

∗(t)) = 0. Since supk≤t ∥ē(t)∥ ≤ τ supk≤t ∥e(k)∥ + τ and e(t) ∈

∞, we have ē(t) ∈ L2 ∩ L∞. With P−1
m (z)h−1(z) being proper

nd stable, we obtain e(t) ∈ L2 ∩ L∞. Then, it is concluded that
imt→∞ e(t) = 0. In addition, with the boundedness of e(t), we
btain the boundedness of ϕj(t), σj(t), δj(t) and m(t), respectively.
oreover, from yj(t) = ξj,1(t), we derive the boundedness of x(t).
inally, we can get the boundedness of u(t). Thus, all signals in the
losed-loop system are bounded. This completes the proof. □

So far, we have developed a singularity-free state feedback
daptive control law, where the determinant of the adaptive
ontrol gain matrix is always equal to one. Such a control law

nsures asymptotic output tracking.
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. Output feedback adaptive control

This section considers the case when x(t) is unavailable, and
only the output is measurable. In this case, the state feedback
adaptive control law will no longer be effective. As shown in
the literature, the high-gain observer may be first employed to
estimate the state x(t), followed by designing an output feedback
control law to achieve uniformly ultimately bounded tracking.

Instead of using the high-gain observer, this paper proposes
a future time signal estimation-based adaptive control scheme.
Compared with the existing results, the proposed output feedback
adaptive control scheme ensures asymptotic output tracking and
does not involve the high-gain issue. The basic idea is first to
estimate the system parameters and use the derived parameter
estimates to construct the estimates of some unknown further
time signals. The future time signal estimation does not depend
on any persistently exciting condition. Thus, the estimates cannot
converge to their corresponding unknown signals. Nevertheless,
we show that the developed output feedback adaptive control law
ensures asymptotic output tracking.

The design procedure contains six steps: (i) estimation of the
system parameters; (ii) estimation of future time signals; (iii)
construction of an output feedback adaptive control law; (iv)
specification of a modified tracking error model; (v) construction
of controller parameter updating law; and (vi) analysis of the
system performance. The details are as follows.

Step 1: Estimation of the system parameters. For simplicity
of presentation and without loss of generality, we assume ρ1 ≤

ρ2 ≤ · · · ≤ ρM . Let r =
∑M

i=1 pi+M+
∑M

i=1 si. From (8), we define

φ(t) = φ(x(t), t) = [φf (x(t)), ū(t), φd(t)]T ∈ Rr ,

Λ∗
= {Λ∗

ij} = [Θ∗

f , Θ∗

g , Θ∗

d ] ∈ RM×r , (37)

where x(t) = [y1(t), . . . , y1(t + ρ1 − 1), . . . , yM (t), . . . ,
yM (t + ρM − 1)]T , ū(t) = [ū1(t), ū2(t), . . . , ūM (t)]T , and d(t) =

[d1(t), d2(t), . . . , dM (t)]T . Then, it follows from (4) that

[y1(t + ρ1), . . . , yM (t + ρM )]T = Λ∗φ(t). (38)

Let Λ(t) = [Θf (t), Θg (t), Θd(t)] be the estimate of Λ∗. To reduce
notation, we still use ε(t) to denote the estimation error defined
as

εi(t + ρi − ρM ) = Λi(t)φ(t − ρM ) − yi(t + ρi − ρM ) (39)

for 1 ≤ i ≤ M and t ≥ ρM , where Λi(t) and εi(t) are the ith row
of Λ(t) and ε(t), respectively. Using ε(t), we design the parameter
updating law for Λi(t) as

ΛT
i (t + 1) = ΛT

i (t) −
Γiεi(t + ρi − ρM )φ(t − ρM )

m2(t − ρM )
(40)

or 1 ≤ i ≤ M , where

m(t − ρM ) =

√
1 + φ(t − ρM )Tφ(t − ρM ). (41)

nd Γi = diag{γi1 , . . . , γir } are the adaptation gains with γij ∈

0, 2), 1 ≤ j ≤ r . Since ρi ≤ ρM , the parameter updating law (40)
nly relies on known parameters and signals, which are certainly
vailable at the current instant. Based on parameter updating
aw (40), the estimates Λi(t), i = 1, . . . ,M , have the following
important properties.

Lemma 5. The parameter updating law (40) ensures that Λi(t) ∈

L∞, and εi(t+ρi−ρM )
m(t−ρM ) , Λi(t + i0) − Λi(t) ∈ L2, i = 1, . . . ,M, where i0

s an arbitrary positive integer.

roof. Consider the following positive definite functions Vi(Λ̃i) =

˜ iΓ
−1
i Λ̃T

i for i = 1, . . . ,M , where Λ̃i = Λi(t)−Λ∗

i with Λ∗

i being
he ith row of Λ∗. Then, we obtain
7

Vi(Λ̃i(t + 1)) − Vi(Λ̃i(t))

= −

(
2 −

φi(t − ρM )TΓiφi(t − ρM )
m2(t − ρM )

)
ε2
i (t + ρi − ρM )
m2(t − ρM )

.

ince Γi is a diagonal matrix with γij ∈ (0, 2) and m(t −

M ) =
√
1 + φ(t − ρM )Tφ(t − ρM ), it yields that Vi(Λ̃i(t + 1)) −

i(Λ̃i(t)) ≤ −
βiε

2
i (t+ρi−ρM )
m2(t−ρM )

, where βi = 2 − max1≤j≤r{γij} > 0. It
follows that Λi(t) ∈ L∞ and Vi(Λ̃i(t)) is non-increasing. With the
well-known monotone bounded theorem, we found that Vi(Λ̃i(t))
is convergent. Accordingly, we have

∑N
t=ρM

βiε
2
i (t+ρi−ρM )
m2(t−ρM )

≤ V (Λ̃i

(ρM )) − V (Λ̃i(N + 1)). It is found that
∑

∞

t=ρM

ε2i (t+ρi−ρM )
m2(t−ρM )

is con-

vergent, i.e., εi(t+ρi−ρM )
m(t−ρM ) ∈ L2. Furthermore, it is inferred from (40)

hat Λi(t + 1) − Λi(t) ∈ L2. □

Lemma 5 reveals some important properties about the esti-
ated parameter Λ(t) and the estimation error ε(t), which are
ssential for the stability analysis.
Step 2: Estimation of future time signals. Using Λ(t), we

onstruct an estimation procedure to estimate some future time
ignals. Let ŷ(t + j) be an estimate of y(t + j) at the current time
nstant with ŷj(t) = yj(t). For 1 ≤ kj ≤ ρj − ρj−1 with 2 ≤ j ≤ M
nd 1 ≤ k1 ≤ ρ1, we define

(t − ρj + kj) = [φf (̂x(t − ρj + kj)), ū(t − ρj + kj),

φd(t − ρj + kj)]T . (42)

here x̂(t − ρj + kj) is an estimate of x(t − ρj + kj). Recalling that

(t) = [y1(t), y1(t + 1), . . . , y1(t + ρ1 − 1), . . . , yM (t),
yM (t + 1), . . . , yM (t + ρM − 1)]T , (43)

e have

x(t − ρj + kj)
[y1(t − ρj + kj), y1(t + 1 − ρj + kj), . . . ,
y1(t + ρ1 − 1 − ρj + kj), . . . , yj(t − ρj + kj), . . . ,
yj(t), yj(t + 1), . . . ..., yj(t + kj − 2), yj(t + kj − 1), . . . ,
yM (t − ρj + kj), . . . , yM (t), yM (t + 1), . . . ,

yM (t + ρM − 1 − ρj + kj)]T . (44)

ased on the structure of x(t − ρj + kj) in (44), we design an
stimate of x(t − ρj + kj). Here, x̂(t − ρj + kj) is derived from
(t − ρj + kj) by replacing its unknown elements with their
stimates and has the following form

x̂(t − ρj + kj)[
y1(t − ρj + kj), y1(t + 1 − ρj + kj), . . . ,
y1(t + ρ1 − 1 − ρj + kj), . . . , yj(t − ρj + kj), . . . ,
ŷj(t), ŷj(t + 1), . . . , ŷj(t + kj − 2), ŷj(t + kj − 1), . . . ,
yM (t − ρj + kj), . . . , ŷM (t), ŷM (t + 1), . . . ,

ŷM (t + ρM − 1 − ρj + kj)
]T

. (45)

n (45), the estimate x̂(t − ρj + kj) can be obtained from x(t −

j + kj) by only replacing the unknown signals yj(t + i) with
heir estimates ŷj(t + i). So, the key issue is how to design
he estimates ŷj(t + i). To ensure the estimation process with
easonable causality properties, we realize the future time signal
stimation by the following procedure.
(i) Estimation of yM (t+ i), i = 1, . . . , ρM −ρM−1. According to

he definition of φ(t) in (37), the signal φ(t − ρM + 1) is available
t the current time instant. Therefore, we derive an estimate of
M (t + 1) as ŷM (t+1) = ΛM (t)φ(t − ρM + 1). Using ŷM (t+1), we
an directly derive an estimate φ̂(t −ρ +2) from φ(t − ρ + 2)
M M
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y replacing yM (t + 1) with ŷM (t + 1). Then, we further specify
an estimate of yM (t + 2) as ŷM (t + 2) = ΛM (t )̂φ(t − ρM + 2).
ollowing this procedure, we can derive the estimates of yM (t + i)

for i = 1, 2, . . . , ρM − ρM−1 as follows:

yM (t + i) = ΛM (t )̂φ(t − ρM + i), (46)

with φ̂(t − ρM + 1) = φ(t − ρM + 1).
(ii) Estimation of yM (t + j) and yM−1(t + k), ρM − ρM−1 < j ≤

ρM − ρM−2, 1 ≤ k ≤ ρM−1 − ρM−2. By using (46), the estimate
φ(t−ρM−1+1) can be obtained from φ(t − ρM−1 + 1) by replacing
yM (t+i) with their estimates ŷM (t+i) for i = 1, 2, . . . , ρM −ρM−1.
In the estimation process, designing the estimates of yM (t + j),
ρM−ρM−1 < j ≤ ρM−ρM−2 needs the estimates of yM−1(t+j), 1 ≤

j ≤ ρM−1 −ρM−2. Therefore, we estimate them simultaneously in
the following.

Using φ̂(t −ρM−1 + 1), we derive ŷM−1(t + 1) = ΛM−1(t )̂φ(t −

ρM−1 + 1) and ŷM (t + ρM − ρM−1 + 1) = ΛM (t )̂φ(t − ρM−1 + 1).
Next, we get φ̂(t − ρM−1 + 2) from φ(t − ρM−1 + 2) by replacing
yM (t+j), 1 ≤ j ≤ ρM−ρM−1+1 and yM−1(t+1) with ŷM (t+j), 1 ≤

j ≤ ρM − ρM−1 + 1 and ŷM−1(t + 1), respectively. Moreover, we
design the estimates of yM−1(t +2) and yM (t +ρM −ρM−1 +2) as
yM−1(t+2) = ΛM−1(t )̂φ(t−ρM−1+2) and ŷM (t+ρM−ρM−1+2) =

ΛM (t )̂φ(t −ρM−1 + 2), respectively. Following this procedure, we
can sequentially derive the estimates of yM (t + ρM − ρM−1 + i)
and yM−1(t + i), i = 1, . . . , ρM−1 − ρM−2, as

yM (t + ρM − ρM−1 + i) = ΛM (t )̂φ(t − ρM−1 + i),
yM−1(t + i) = ΛM−1(t )̂φ(t − ρM−1 + i). (47)

(iii) Estimation of other future time output signals. According
to the estimation procedure shown in (i) and (ii), we can sequen-
tially specify the estimate of the future time output signal yi(t+j).
Overall, we first estimate yM (t+ j), j = 1, . . . , ρM −ρM−1. Second,
we estimate yM (t + j), j = ρM − ρM−1 + 1, . . . , ρM − ρM−2 and
yM−1(t + k), k = 1, . . . , ρM−1 − ρM−2. Third, we estimate yM (t +

j), j = ρM − ρM−2 + 1, . . . , ρM − ρM−3, yM−1(t + k), k = ρM−1 −

ρM−2 + 1, . . . , ρM−1 − ρM−3 and yM−2(t + i), i = 1, . . . , ρM−2 −

M−3. Finally, following this procedure provides the estimate of
i(t + j) as

i(t + j) = Λi(t )̂φ(t − ρi + j), i = 1, ...,M, j = 1, ..., ρi − 1. (48)

or the estimate ŷi(t + j) given in (48), the following lemma
shows some important properties which are crucial for the output
feedback control design and analysis.

Lemma 6. The estimates ŷi(t + j), 1 ≤ i ≤ M, 1 ≤ j ≤ ρi − 1,
given in (48) are available at the current time instant and have the
following properties

|̂yi(t + j) − yi(t + j)|
≤ τ (t) max

k=0,1,...,ρM−1
{∥φ(t − k)∥} + τ (t), (49)

where τ (t) denotes a generic L2 function that goes to zero as t goes
to infinity.

Proof. Based on the estimation procedure shown above, it is
inferred that ŷi(t+ j) is available at the current time instant. Now,
we show that (49) holds. With the estimate of yM (t +1), it yields
yM (t + 1) − yM (t + 1) = ΛM (t )̂φ(t − ρM + 1) − yM (t + 1) =

(ΛM (t)−ΛM (t+1))̂φ(t−ρM+1)+ εM (t+1)
m(t−ρM+1)m(t−ρM+1). Lemma 5

gives ΛM (t)−ΛM (t +1) ∈ L2 and εM (t+1)
m(t−ρM+1) ∈ L2. Also, from (41),

we get m(t−ρM +1) ≤ ∥φ(t−ρM +1)∥+1 = ∥φ̂(t−ρM +1)∥+1.
Accordingly,

|̂y (t + 1) − y (t + 1)| ≤ τ (t)∥φ(t − ρ + 1)∥ + τ (t). (50)
M M M
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Note that ŷM (t+2)−yM (t+2) = ΛM (t )̂φ(t−ρM +2)−yM (t+2) =

ΛM (t )̂φ(t−ρM+2)−ΛM (t )̂φ(t−ρM+1)+(ΛM (t)−ΛM (t+2))̂φ(t−
ρM+1)+ εM (t+2)

m(t−ρM+2)m(t−ρM+2). Since fik is Lipschitz mapping, we
ave ∥φ̂(t −ρM +2)− φ̂(t −ρM +1)∥ ≤ c|yM (t + 1) − ŷM (t + 1)|.
rom (41), we have m(t − ρM + 2) ≤ ∥φ(t − ρM + 2)∥ + 1. From
emma 5, we have ΛM (t) − ΛM (t + 2) ∈ L2 and εM (t+1)

m(t−ρM+1) ∈

2, which together with (50) implies |̂yM (t + 2) − yM (t + 2)| ≤

(t)maxk=ρM−2,ρM−1{∥φ(t−k)∥}+τ (t). For i = 1, . . . , ρM−ρM−1+

, we can sequentially derive from Lemma 5 and the Lipschitz
roperty of fik that

|̂yM (t + i) − yM (t + i)|
τ (t) max

k=0,1,...,ρM−1
{∥φ(t − k)∥} + τ (t). (51)

oreover, ŷM−1(t + 1) − yM−1(t + 1) = −yM−1(t + 1) +

M−1(t )̂φ(t − ρM−1 + 1) = ΛM−1(t)(̂φ(t − ρM−1 + 1) − φ(t −

M−1 + 1)) + (ΛM−1(t) − ΛM−1(t + ΛM−1))φ(t − ρM−1 + 1) +
εM−1(t+1)

m(t−ρM−1+1)m(t − ρM−1 + 1). Since fik is Lipschitz mapping, we
et |̂φ(t − ρM−1 + 1) − φ(t − ρM−1 + 1)| ≤ c maxk=1,...,ρM−ρM−1 |

M (t + k) − ŷM (t + k)|. Then, it follows from Lemma 5 and (51)
hat

|̂yM−1(t + 1) − yM−1(t + 1)|
τ (t) max

k=0,1,...,ρM−1
{∥φ(t − k)∥} + τ (t). (52)

ollowing the above recursive procedure, we can derive that
i(t + j) satisfies (49) for i = M − 1,M − 2, . . . , 1 and 1 ≤ j ≤ ρi
equentially. This completes the proof. □

Lemma 6 presents a key property of the estimate ŷi(t+j). With
his property, the output feedback control law can be designed to
nsure the closed-loop signals are all bounded. Then, it follows
rom (49) that the error ŷi(t + j) − yi(t + j) converges to zero.

Step 3: Construction of adaptive control law. For the output
eedback case, we design the adaptive control law as

(t) = Φ−1
g (̂x(t))ū(t),

¯(t) = (I + Θ2(t))−1 (
−Θ1(t)φf (̂x(t)) − Θ3(t)φd(t)

−Θ4(t)

⎡⎢⎣
∑ρ1−1

i=0 a1i (̂y1(t + i) − y∗

1(t + i))
...∑ρM−1

i=0 aMi (̂yM (t + i) − y∗

M (t + i))

⎤⎥⎦

+Θ4(t)

⎡⎢⎢⎢⎣
y∗

1(t + ρ1)
y∗

2(t + ρ2)
...

y∗

M (t + ρM )

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (53)

here Θi(t), i = 1, 2, 3, 4 are estimates of Θ∗

1 , Θ
∗

2 , Θ
∗

3 , (S
∗Ds)−1,

espectively, ŷi(t + j) is given in (48), and

(t) = [y1(t), ŷ1(t + 1), . . . , ŷ1(t + ρ1 − 1), . . . ,
yM (t), ŷM (t + 1), . . . , ŷM (t + ρM − 1)]T . (54)

Step 4: Specification of a modified tracking error model.
efine an output estimation-based tracking error as êi(t + j) =

i(t + j) − y∗

i (t + j) for 1 ≤ i ≤ M and 0 ≤ j ≤ ρi − 1 with
i(t) = ei(t). Together with (9) and (53), we have

m(z)[e](t) = S∗DsΨ̃ (t)ϕ(t) +⎡⎢⎣
∑ρ1−1

i=0 a1i[y1(t + i) − ŷ1(t + i)]
...∑ρM−1

i=0 aMi[yM (t + i) − ŷM (t + i)]

⎤⎥⎦
+S∗D Θ∗(φ (x(t)) − φ (̂x(t))). (55)
s 1 f f
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here Pm(z) and Ψ̃ (t) have the same expressions as Pm(z) and
Ψ̃ (t) in (17) of the state feedback case, and

ϕ(t) = [−φT
f (̂x(t)), −ūT (t), −φT

d (t),

−

ρ1−1∑
i=0

a1îe1(t + i) + y∗

1(t + ρ1), · · · ,

−

ρM−1∑
i=0

aMîeM (t + i) + y∗

M (t + ρM )]T . (56)

ere, we introduce stable and strictly proper filters

i(z) =
1

zρi + α′

i,ρi−1zρi−1 + · · · + α′

i1z + α′

i0
(57)

or i = 1, . . . ,M , subject to their impulse response functions
ust be greater than or equal to zero. Then, we see that the
implest choice of Hi(z) is 1

zρi . We define H(z) = diag{Hi(z)},
ollowed by defining a filtered tracking error as

¯(t) = Pm(z)H(z)[e](t). (58)

ote that Pm(z)H(z)[e](t) = diag{Pmi(z)Hi(z)[ei](t)}. With the
orm of Pmi(z) and Hi(z), we have

Pmi(z)Hi(z)[e](t)(
1 +

(ai,ρi−1 − α′

i,ρi−1)z
ρi−1

+ · · · + (ai0 − α′

i0)

zρi + α′

i,ρi−1zρi−1 + · · · + α′

i1z + α′

i0

)
[ei](t)

= ei(t) +
(ai,ρi−1 − α′

i,ρi−1)z
ρi−1

+ · · · + (ai0 − α′

i0)

zρi + α′

i,ρi−1zρi−1 + · · · + α′

i1z + α′

i0
[ei](t).

Since
(ai,ρi−1−α′

i,ρi−1)z
ρi−1

+···+(ai0−α′
i0)

zρi+α′
i,ρi−1z

ρi−1
+···+α′

i1z+α′
i0

is stable and strictly proper,

mi(z)Hi(z)[e](t) can be acquired from the current known output
ignals and the reference signals. Thus, the filtered tracking error

¯(t) is available at the current time instant. Therefore, using
filtered tracking error (58) to define an estimation error and pa-
rameter updating law does not involve the causality contradiction
problem.

Step 5: Construction of controller parameter updating law.
o reduce notation, we still use ε(t) to denote an estimation error
s

(t) = ē(t) + Φ(t)σ (t), (59)

here Φ(t) is the estimate of S∗Ds and σ (t) = [σ1(t), σ2(t), . . . ,
M (t)]T with

j(t) = Ψj(t)δj(t) − Hj(z)[Ψjϕj](t),

δj(t) = Hj(z)[ϕj](t). (60)

In particular, Ψj(t), j = 1, . . . ,M , have the same expressions as
Ψj(t) in (19), and ϕj(t), j = 1, . . . ,M , are derived from (20) by
replacing x(t) and ei(t + j) with their estimates x̂(t) and êi(t + j).
It is noteworthy that ē(t), ε(t), σj(t), δj(t) are all available at the
current time instant. Then, we design the parameter updating law
as follows:

Ψ T
j (t + 1) = Ψ T

j (t) −
sign{d∗

j }γjεj(t)δj(t)

m2(t)
, (61)

Φ(t + 1) = Φ(t) −
βε(t)σ T (t)

m2(t)
, (62)

here j = 1, 2, . . . ,M , m(t) has the same form as m(t) in (28)
nd γj and β have the same meanings as γj and β clarified below
28), respectively.

Performing a proof similar to that of Lemma 1, one can see
hat the given parameter updating law (61)–(62) ensures the
 L
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estimates have the following properties: (i) Ψj(t) ∈ L∞, Φ(t) ∈

L∞, j = 1, 2, . . . ,M; and (ii) ε(t)
m(t) ∈ L2 ∩ L∞, Φ(t + 1) − Φ(t) ∈

L2 ∩ L∞, and Ψj(t + 1) − Ψj(t) ∈ L2 ∩ L∞, j = 1, 2, . . . ,M .
Step 6: Analysis of the system performance. Based on above

derivations, we give the second main result of this paper as
follows.

Theorem 7. Under Assumptions (A1)-(A3), if the output feedback
adaptive control law (53) with the parameter updating law (61)–
(62) is applied to the system (1), then the closed-loop system is stable
and of asymptotic output tracking limt→∞(y(t) − y∗(t)) = 0.

roof. The proof contains four steps. First, we show

M∑
j=1

|σj(t)| ≤ τ

M∑
i=1

ρi−1∑
j=1

|̂ei(t + j)| + τ sup
k≤t

∥e(k)∥ + τ . (63)

ince ∥y∗(t)∥ ≤ c and fik is Lipschitz mapping, it yields ∥ϕj(t)∥ ≤

∥̂x(t)∥ + c∥e(t)∥ + c
∑M

i=1
∑ρi−1

j=1 |̂ei(t + j)| + c. Then, with the
oundedness of y∗(t), we get ∥ϕj(t)∥ ≤ c∥̂x(t) − x∗(t) + x∗(t)∥ +

∥e(t)∥ + c
∑M

i=1
∑ρi−1

j=1 |̂ei(t + j)| + c ≤ c∥̂x(t) − x∗(t)∥ +

∥x∗(t)∥ + c∥e(t)∥ + c
∑M

i=1
∑ρi−1

j=1 |̂ei(t + j)| + c ≤ c∥e(t)∥ +∑M
i=1
∑ρi−1

j=1 |̂ei(t + j)|+ c, where x∗(t) ≜ [y∗

1(t), . . . , y
∗

1(t +ρ1 −

), . . . , y∗

M (t + ρM − 1)]T . With σj(t) = Ψj(t)δj(t) − Hj(z)[Ψjϕj](t),
δj(t) = Hj(z)[ϕj](t) and using Lemma 3, we get

σj(t) = Ψj(t)Hj(z)[ϕj](t) − Hj(z)[Ψjϕj](t)

= HCj (z)[(HBj (z)z)[ϕ
T
j ](z − 1)[Ψ T

j ]](t), (64)

where Cj(zI − Aj)−1Bj denotes a minimal realization of Hj(z),
HCj (z) = Cj(zI − Aj)−1, and HBj (z) = (zI − Aj)−1Bj. Since

Bj (z)z is proper and stable, we have ∥HBj (z)z[ϕ
T
j ](t)∥ ≤ c +

supk≤t ∥e(k)∥ + c
∑M

i=1
∑ρi−1

j=1 |̂ei(t + j)|. With |[(HBj (z)z)[ϕ
T
j ]

(z − 1)[Ψ T
j ]](t)| ≤ ∥Ψj(t + 1) − Ψj(t)∥∥HBj (z)z[ϕj](t)∥ and Ψj(t +

) − Ψj(t) ∈ L2 ∩ L∞, we have

|[(HBj (z)z)[ϕ
T
j ](z − 1)[Ψ T

j ]](t)|

τ

M∑
i=1

ρi−1∑
ji=1

|̂ei(t + j)| + τ sup
k≤t

∥e(k)∥ + τ . (65)

rom (64), (65), and the fact that the impulse response of Hj(z) is
reater than or equal to zero, we obtain |σj(t)| ≤ τ

∑M
i=1
∑ρi−1

j=1
êi(t + j)|+τ supk≤t ∥e(k)∥+τ , ∀j = 1, 2, . . . ,M . Thus, (63) holds.

Second, we demonstrate that

m(t) ≤ c
M∑
i=1

ρi−1∑
j=1

|̂ei(t + j)| + c sup
k≤t

∥e(k)∥ + c. (66)

From the definition of δj(t) and the condition that Hj(z) is strictly
proper and stable, we get ∥δj(t)∥ ≤ c supk≤t ∥ϕj(k)∥ + c. Next, it
ollows from ∥ϕj(t)∥ ≤ c

∑M
i=1
∑ρi−1

j=1 |̂ei(t + j)| + c∥e(t)∥ + c that

∥δj(t)∥ ≤ c
M∑
i=1

ρi−1∑
j=1

|̂ei(t + j)| + c sup
k≤t

∥e(k)∥ + c. (67)

rom the definition of m(t), we conclude that m(t) ≤ 1 +
M
j=1 |σj(t)| +

∑M
j=1 ∥δj(t)∥. Then, it follows from (63) and (67)

that (66) holds.
Third, we prove e(t) ∈ L∞. From (59), we have ∥ē(t)∥ ≤

ε(t)∥ + ∥Φ(t)σ (t)∥ ≤ m(t)
 ε(t)

m(t)

 + ∥Φ(t)σ (t)∥. Since ε(t)
m(t) ∈

2
∩ L∞ and Φ(t) ∈ L∞, from

∑M
|σ (t)| ≤ τ

∑M ∑ρi−1
|̂e (t +
j=1 j i=1 j=1 i
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) ∥ +τ supk≤t ∥e(k)∥ + τ , we get

ē(t)∥ ≤ τ

M∑
i=1

ρi−1∑
j=1

|̂ei(t + j)| + τ sup
k≤t

∥e(k)∥ + τ . (68)

hen, we have

sup
k≤t

∥ē(k)∥ ≤ τ

M∑
i=1

ρi−1∑
j=1

|̂ei(t + j)| + τ sup
k≤t

∥e(k)∥ + τ . (69)

From Lemma 6, we get

|̂ei(t + j)| = |̂yi(t + j) − y∗

i (t + j)|
≤ |̂yi(t + j) − yi(t + j)| + |yi(t + j) − y∗

i (t + j)|
≤ τ (t) max

k=0,1,...,ρM−1
{∥φ(t − k)∥} + τ (t)

+|ei(t + j)|. (70)

With the definition of ∥φ(t)∥ and the Lipschitz property of fik , we
have

∥φ(t − k)∥ = ∥φ(x(t − k), t − k)∥
≤ ∥φ(x(t − k), t − k) − φ(x∗(t − k), t − k)∥

+∥φ(x∗(t − k), t − k)∥
≤ ∥φf (x(t − k)) − φf (x∗(t − k))∥

+∥φ(x∗(t − k), t − k)∥

≤ c
∑
ik

|fik (x(t − k)) − fik (x
∗(t − k))| + c

≤ c sup
k≤t+ρM−1

∥e(k)∥ + c (71)

for k = 0, 1, . . . , ρM − 1. Thus, we get

max
k=0,1,...,ρM−1

∥φ(t − k)∥ ≤ c sup
k≤t+ρM−1

∥e(k)∥ + c. (72)

Then, it follows from (69) and (70) that

sup
k≤t

∥ē(k)∥ ≤ τ

M∑
i=1

ρi−1∑
j=1

|ei(t + j)| + τ sup
k≤t

∥e(k)∥

+τ max
k=0,1,...,ρM−1

{∥φ(t − k)∥} + τ

≤ τ sup
k≤t+ρM−1

∥e(k)∥ + τ . (73)

With P−1
m (z) and H−1(z) being the inverse of Pm(z) and H(z),

respectively, we get P−1
m H−1(z) is proper and stable. From the

definition of ē(t) in (58), we derive that ∥e(t)∥ ≤ c supk≤t ∥ē(t)∥+

c ≤ τ supk≤t+ρM−1 ∥e(k)∥ + c, which implies that e(t) ∈ L∞.
Finally, we prove closed-loop stability and limt→∞(y(t) −

y∗(t)) = 0. Since e(t) ∈ L∞ and supk≤t ∥ē(k)∥ ≤ τ supk≤t+ρM−1
∥e(k)∥ + τ , we have ē(t) ∈ L2 ∩ L∞. With P−1

m H−1(z) being
proper and stable, we obtain e(t) ∈ L2 ∩ L∞. Then, we conclude
that limt→∞ e(t) = 0. Further, the boundedness of all closed-
loop signals can be obtained from the boundedness of e(t). This
completes the proof. □

So far, this section has developed a future time signal
estimation-based output feedback adaptive control scheme,
where the adaptive control law is always non-singular. Partic-
ularly, essentially different from the high-gain observer based
adaptive control methods, the proposed adaptive control law
does not involve the high-gain issue and ensures asymptotic
output tracking.
 u

10
5. Simulation example

This section gives a numerical example to show the design
procedure and verify the validity of the proposed control scheme.

System model. Consider the following system model

ξ11(t + 1) = θ∗T
f1 φf1 (x(t)) +

2∑
j=1

θ∗T
g1jφg1juj(t) + d1(t),

ξ21(t + 1) = ξ22(t),

ξ22(t + 1) = θ∗T
f2 φf2 (x(t)) +

2∑
j=1

θ∗T
g2jφg2juj(t) + d2(t),

y1(t) = ξ11(t), y2(t) = ξ21(t), (74)

where x(t) = [ξ11, ξ21, ξ22]
T is the state vector, and u(t) =

[u1, u2]
T and y(t) = [ξ11, ξ21]

T are the system input and output
vectors, respectively. The vector relative degree of the system
model (74) is ρ = [1, 2]. Moreover, θ∗T

f1
φf1 = 2.1

√
1 + ξ 2

11 +

.7ξ22 sin ξ21, θ∗T
f2

φf2 = 0.6ξ21 sin ξ22 + 0.8ξ11, θ∗T
g11φg11 = −21 −

sin2 ξ11 + sin2 ξ21, θ∗T
g12φg12 = −11− cos2 ξ21 + sin2 ξ22, θ∗T

g21φg21 =

−3 + 3 sin2 ξ21, and θ∗T
g22φg22 = −30 + 3 sin2 ξ22. Additionally,

d1(t) = θ∗T
d1

φd1 (t) = 0.02 sin(t/8) and d2(t) = θ∗T
d2

φd2 (t) =

0.05 cos(t/6). In this simulation, we assume that the system
parameters are all unknown.

Parameterized model. From (74), we have

Φg (x) =

[
20 + sin2 ξ11 1 + cos2 ξ21

1 − sin2 ξ21 10 − sin2 ξ22

]
,

and decompose Θ∗
g as

Θ∗

g =

[
1 0
0 1

][
−1 0
0 −3

][
1 1
0 1

]
,

where S∗,Ds,Us are three matrices of the right side, respectively.
Then, we have[
y1(t + 1)
y2(t + 2)

]
= Θ∗

f φf (x(t)) + S∗DsUsū(t) + Θ∗

dφd(t),

here

∗

f =

[
2.1 1.7 0 0
0 0 0.6 0.8

]
, Θ∗

d =

[
0.02 0
0 0.05

]
,

and φf (x(t)) = [

√
1 + ξ 2

11, ξ22 sin ξ21, ξ21 sin ξ22, ξ11]
T , φd(t) =

sin t
8 , cos

t
6 ]

T and ū(t) = Φg (x(t))u(t). Then, we have

∗−1
[
y1(t + 1)
y2(t + 2)

]
= DsΘ

∗

1φf (x(t)) + DsΘ
∗

2 ū(t)

+Dsū(t) + DsΘ
∗

3φd(t), (75)

here

∗−1
=

[
1 0
0 1

]
, Θ∗

2 =

[
0 1
0 0

]
,

Θ∗

1 = D−1
s S∗−1Θ∗

f =

[
−2.1 −1.7 0 0
0 0 −0.2 −0.2667

]
,

Θ∗

3 = D−1
s S∗−1Θ∗

d =

[
−2 0
0 −0.5

]
.

Simulation for the state feedback. When the system states
re available, the state feedback adaptive control law is designed
s

(t) = Φ−1(x(t))ū(t),
g
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Fig. 1. Response of y(t) v.s. y∗(t) (state feedback case).

ū(t) = (I + Θ2(t))−1 (
−Θ1(t)φf (x(t)) − Θ3(t)φd(t)

−Θ4(t)

[
a10(y1(t) − y∗

1(t))∑1
i=0 a2i(y2(t + i) − y∗

2(t + i))

]

+Θ4(t)
[
y∗

1(t + 1)
y∗

2(t + 2)

])
, (76)

where y∗(t) = [−1 − 0.5 sin t
6 + 0.5 cos t

7 , 2 + 0.5 cos t
8 ]

T , and
i(t), 1 ≤ i ≤ 4, are the estimates of Θ∗

1 , Θ∗

2 , Θ∗

3 , (S
∗Ds)−1,

espectively. We choose Pm1(z) = z − 0.2 and Pm2(z) = z2 −

.6z + 0.08. Then, we get a10 = −0.2, a20 = 0.08 and a21 =

0.6. Choose h(z) =
1

z−0.2 . Then, the parameter updating law
can be specified from (26)–(27). To preserve a reasonable paper
length, we omit further details. The simulation results of the state
feedback adaptive control law are given in Figs. 1–2.

Fig. 1 presents the output response y(t) of the system (74) ver-
sus the reference signal y∗(t). The figure illustrates that y(t) tracks
y∗(t) asymptotically. Fig. 2 shows the response of the control
input u(t) and the system state variables, which indicates that the
control input and the state variables are all bounded. In summary,
the simulation results verify the validity of the proposed state
feedback adaptive control law.

Simulation for the output feedback. Considering only the
system output can be acquired, we need to design an output
feedback adaptive control law.

In this case, the state ξ22(t) = y2(t + 1) cannot be used for
adaptive control design. Therefore, we first estimate y2(t + 1).
hoose Γ2 = I8. Then, we can get Λ2(t) based on (39). Next, the
stimate ŷ2(t+1) can be acquired from ŷ2(t+1) = Λ2(t)φ(t−1).
hoose H1(z) =

1
z and H2(z) =

1
z2
. The reference signal y∗(t) is

lso chosen as y∗(t) = [−1−0.5 sin t
6 +0.5 cos t

7 , 2+0.5 cos t
8 ]

T .
Afterward, we can design the output feedback adaptive control
 p

11
Fig. 2. Response of control input and system state variables (state feedback
case).

law based on (53) and the parameter updating law based on
(61)–(62) with ŷ2(t + 1). To increase the paper’s readability, we
gnore the specific design details and give the simulation results
n Figs. 3–4.

Fig. 3 presents the output response y(t) of the system (74)
ersus the reference signal y∗(t). The figure shows that y(t) also
racks y∗(t) asymptotically. Fig. 4 depicts the response of the con-
rol input u(t) and the response of system state variables, which
lso illustrates that the control input and the state variables are
ll bounded. It follows from Figs. 3–4 that the proposed output
eedback adaptive control scheme is also valid.

. Concluding remarks

This paper developed a matrix decomposition-based linearly
arameterized adaptive control scheme for a class of MIMO
iscrete-time nonlinear systems with general vector relative de-
rees. The state and output feedback cases are addressed, which
chieve desired system performance. Notably, we proposed a
uture time signal estimation-based output feedback adaptive
ontrol method which ensures that the control law is always non-
ingular without involving the high-gain and causality contra-
iction issues. Simulation results have demonstrated the control
esign procedure and verified the effectiveness of the proposed
daptive control scheme. There are many important issues de-
erving further study such as how to deal with the case where the
ontrol gain matrix cannot be decomposed into a product of two
quare matrices, how to relax the Lipschitz condition and how
o use quantized sensor measurements to ensure desired system
erformance.
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